Perspective on Bivalve Mollusc Disease from the Marine Environment

Ryan B. Carnegie, PhD Virginia Institute of Marine Science

Major Disease Emergence In Bivalve Molluscs

France

Oyster, Virginia

Aubrey Bodine photo, 1960

Strengths of Marine Shellfish Pathology

- Familiar list of established pathogens and disease agents
- Effective diagnostic tools for their detection
- National and international networks of laboratories sharing information on their status, and new disease emergence
- Deepening pool of biological/ecological knowledge informs management

Marteilia

FISH for Bonamia

Survey site

We Have a Good Handle on Who the Pathogens Are

- Perkinsus, Haplosporidium, Bonamia, Marteilia, Mikrocytos
- OsHV-1 herpesviruses (presently microvariants thereof)
- ✤ QPX
- * Vibrio, Roseovarius bacteria
- or do we?

Vibrio

Bonamia exitiosa

Perkinsus marinus

Haplosporidium nelsoni

Coming to Terms with Pathogen Diversity

- New pathogens of concern emerge or are discovered all the time
 - Perkinsus beihaiensis
 - Mikrocytos spp.
 - Haplosporidians
 - > RLOs?

- What level of genetic diversity is important?
 - For OsHV-1, is it just the microvariants? Or the "reference" strains too?

The Notifiable List

- Powerful tool for aquatic animal health management
- OIE, national lists; pathogens of concern at state level
- Focuses diagnostic effort on "pathogens that count"

Problems with Lists

- Incomplete understanding of susceptible hosts
- Challenges defining pathogens, strains
- Politicization of listing (or not)
- Focus on specific host-pathogen systems can create blind spots with regard to other pathogens
- Paradox of the List: We think it strengthens biosecurity, but may actually reduce biosecurity by creating blind spots

We Have Effective and Advanced Diagnostics

- Histopathology a workhorse platform
- ✤ PCRs for major pathogens; qPCR assays coming online

Increasing Use of Molecular Diagnostics

- Some pathogens can only be (practically) detected by PCR (e.g., OsHV-1)
 - > Not inherently a problem
- Molecular methods promise exquisite sensitivity and high specificity
- * Can be rapid and economical
- Quantitation with qPCRs

The Downside with Molecular Diagnostics

- Detection \neq infection \neq disease; we can only detect what is targeted
- Overreliance on "advanced diagnostics" to the exclusion of broader methods may to reduce biosecurity by creating blind spots with regard to other pathogens: a *Paradox of Advanced Diagnostics*
- Loss of expertise in microscopic recognition of pathogens increasingly limits our broader perspective
- Maintaining fundamental capacity for "traditional" pathology (and virology, and microbiology, etc.) is essential

Lauren Huey

Corinne Audemard

Which Molecular Assays Should We Use?

- Careful design, proper validation of assays is essential
- What is "careful design"?
- Ensuring proper sensitivity and specificity
- Likely the case that assays in use, particularly older assays, may not target all the diversity inherent in pathogens of concern

Perkinsus marinus

Inadequacy in Validation

- Few molecular assays in the mollusc realm have been properly validated
- While all may "work"...
- There is no empirical basis for recommending one over another
- Multiple assays for individual pathogens across various laboratories, with little appreciation for their relative performance

Bonamia exitiosa

We Have Effective Networks of Laboratories

- World Organisation for Animal Health (OIE) Reference Centres
- EU Reference Labs
- US state, university and private laboratories (VIMS, Rutgers, Roger Williams, Florida Atlantic, Stony Brook, Cooperative Oxford Lab, Kennebec River Biosciences)
- Strains the definition of "network" at times, as communication can be non-existent

Managing Marine Mollusc Diseases in the Context of Regional and International Commerce: Policy Issues and Emerging Concerns

> Ryan Carnegie Virginia Institute of Marine Science, College of William & Mary

Dave Bushek Rutgers University Haskin Shellfish Research Laboratory

Isabelle Arzul

Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins

Knowledge of Pathogen Biology Informs Management

But Uncertainty Abounds

- Basic information lacking or not readily available (unpub/gray lit)
 - > Geographic distributions
 - Host distributions/specificity
 - > Life cycles & basic ecology
- Can lead to regulatory paralysis
 - Just say no = zero tolerance
 - > Even where risk is low
- Can harm typically reasonable aquaculture commerce
- At least maximizes biosecurity if not economic benefits to industry

Or Does It?

Inconvenience can drive industry to surreptitious channels, *reducing* biosecurity—a *Paradox of Uncertainty*

The Way Forward

- Develop more broad-based surveillance programs
- Promote and apply wider training in general methods like histopathology
- Demand focus on assessment and validation as fundamental to assay development

The Way Forward

- Invest in research to close key knowledge gaps and reduce uncertainty
- Apply risk analysis to avoid regulatory paralysis

Complex Problems Will Require Broader Collaboration

- "Not just about counting *Perkinsus* cells anymore"
- The nature of health and disease challenges may not be obvious, or straightforward . . .
- Broader expertise may be required to understand, and solve, contemporary questions

Hatchery Health

Triploid Mortality

A Final Vignette

Change: Emergence of Hypervirulent *Perkinsus marinus*

Increased Disease Tolerance

Evolutionary Perspective on Health Management

- Preserving capacity for evolutionary response to disease and environmental changes is important
- Can we fundamentally influence wild populations by hatchery supplementation?
- If we can . . . Should we?
- Chesapeake Bay example highlights the relevance of genetics to health management and conservation/restoration

Greenies

